

Journal of Hazardous Materials B67 (1999) 95-109

# Factors influencing suspended solids concentrations in activated sludge settling tanks

Youngchul Kim<sup>a,\*</sup>, Wesley O. Pipes<sup>b</sup>

<sup>a</sup> Department of Environmental Engineering, Hanseo University, Seosan, Chungnam, 356-820, South Korea <sup>b</sup> School of Environmental Science, Engineering and Policy, Drexel University, Philadelphia, PA 19104, USA

Received 1 September 1998; received in revised form 8 September 1998; accepted 10 February 1999

#### Abstract

A significant fraction of the total mass of sludge in an activated sludge process may be in the settling tanks if the sludge has a high sludge volume index (SVI) or when a hydraulic overload occurs during a rainstorm. Under those conditions, an accurate estimate of the amount of sludge in the settling tanks is needed in order to calculate the mean cell residence time or to determine the capacity of the settling tanks to store sludge. Determination of the amount of sludge in the settling tanks requires estimation of the average concentration of suspended solids in the layer of sludge  $(X_{SR})$  in the bottom of the settling tanks. A widely used reference recommends averaging the concentrations of suspended solids in the mixed liquor (X) and in the underflow  $(X_{u})$  from the settling tanks  $(X_{SB} = 0.5\{X + X_{u}\})$ . This method does not take into consideration other pertinent information available to an operator. This is a report of a field study which had the objective of developing a more accurate method for estimation of the  $X_{\rm SB}$  in the bottom of the settling tanks. By correlation analysis, it was found that only 44% of the variation in the measured  $X_{\rm SB}$  is related to sum of X and  $X_{u}$ .  $X_{SB}$  is also influenced by the SVI, the zone settling velocity at X and the overflow and underflow rates of the settling tanks. The method of averaging X and  $X_{u}$  tends to overestimate the  $X_{\rm SB}$ . A new empirical estimation technique for  $X_{\rm SB}$  was developed. The estimation technique uses dimensionless ratios; i.e., the ratio of  $X_{\rm SB}$  to  $X_{\rm u}$ , the ratio of the overflow rate to the sum of the underflow rate and the initial settling velocity of the mixed liquor and sludge compaction expressed as a ratio (dimensionless SVI). The empirical model is compared with the method of averaging X and  $X_{\rm p}$  for the entire range of sludge depths in the settling tanks and for SVI values between 100 and 300 ml/g. Since the empirical model uses dimensionless ratios, the regression parameters are also dimensionless and the model can be

<sup>\*</sup> Corresponding author. Tel: +82-455-660-1432; E-mail: ykim@gaya.hanseo.ac.kr

readily adopted for other activated sludge processes. A simplified version of the empirical model provides an estimation of  $X_{SB}$  as a function of X,  $X_u$  and  $SV_f$  and can be used by an operator when flow conditions are normal. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Activated sludge processes; Settling tanks; Sludge blanket depth (SBD)

## 1. Introduction

The total mass of sludge solids in an activated sludge process  $(M_T)$  includes the sludge in the settling tanks  $(M_s)$  as well as the sludge in the aeration tanks  $(M_a)$ :

$$M_{\rm T} = M_{\rm a} + M_{\rm s}.\tag{1}$$

 $M_{\rm a}$  is easily calculated from:

$$M_a = V_a X f, \tag{2}$$

where  $V_a$  is the volume of the aeration tanks (known from the plant design), X is the mixed liquor suspended solids (normally measured once a day or more frequently), and f is a unit conversion factor (f = 0.001 kg/g when  $V_a$  is in m<sup>3</sup> and X is in g/m<sup>3</sup>). The amount of sludge in the settling tanks [1] can be calculated from:

$$M_{\rm s} = V_{\rm s} X_{\rm SB} f, \tag{3}$$

where  $V_{\rm s}$  is the volume of the layer of sludge in the bottom of the settling tanks and  $X_{\rm SB}$  is the average suspended solids concentration in that layer.

Some of the design and operating parameters on an activated sludge process (e.g. F/M ratio) depend upon  $M_a$  but others are more properly related to  $M_T$ . For example, the mean cell residence time,  $\theta_x$ , should be based on  $M_T$  to give an accurate estimation of the average amount of time that a microbial cell spends in the process. It is often assumed that  $M_s$  will be negligible compared with  $M_a$  and the calculation of  $\theta_x$  is based on  $M_T$ . However, when the sludge volume index (SVI) is high,  $M_s$  can be a significant fraction (up to 40%) of  $M_T$  [2] and neglecting  $M_s$  in the calculation of  $\theta_x$  can mislead the operator.

A diagram of an activated sludge settling tank with the mass flows of suspended solids indicated is presented in Fig. 1. In the United States, the layer of sludge in the bottom of the settling tanks is called a 'sludge blanket' and  $X_{SB}$  is the 'sludge blanket suspended solids'.

The sludge blanket depth is indicated by SBD and  $V_s = (SBD)(A_s)$  where  $A_s$  is the area of the settling tanks.  $J_m$  is the mass flow of mixed liquor suspended solids flow,  $J_u$  is the mass flow of suspended solids out of the bottom of the settling tanks and  $J_e$  is the mass flow of suspended solids in the effluent. It is widely recognized that clarification of the effluent so that  $J_e$  is small and thickening of the sludge so that  $J_u$  is almost as large as  $J_m$  are two important functions of activated sludge settling tanks and these functions have been studied by many investigators.

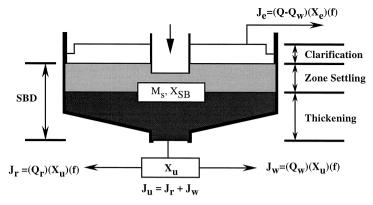



Fig. 1. Diagram of an up-flow settling tanks with identification of mass flows of suspended solids, the sludge blanket depth and zones in the settling tank.

A mass balance of the suspended solids into and out of the settling tank can be written as:

$$\frac{\mathrm{d}M_{\rm s}}{\mathrm{d}t} = \{(Q+Q_{\rm r})(X) - (Q_{\rm r}+Q_{\rm w})(X_{\rm u}) - (Q-Q_{\rm w})(X_{\rm e})\}(f).$$
(4)

The terms are defined in Fig. 1 and in Appendix A. In a municipal wastewater treatment plant, Q may increase to two or three times greater than the normal dry weather flow during a rainstorm. When Q is very high (hydraulic overload),  $J_u$  will not carry sludge solids out of the settling tanks as fast as they are brought in with  $J_m$  and  $dM_s/dt > 0$ . For a finite period of time,  $\Delta t$ , during the hydraulic overload,  $\Delta M_s = (J_m - J_u)\Delta t$  has to be stored in the settling tanks until the rainstorm is over and the sludge can be pumped back to the aeration tanks. The total solids storage in the settling tanks at t = t from t = 0 during storm flow conditions [3] can be evaluated from:

$$M_{\text{st}=t} = M_{\text{st}=0} + \sum_{t=1}^{t=t} (J_{\text{m}} - J_{\text{u}} - J_{\text{e}}) (\Delta t).$$
(5)

The solids storage function of activated sludge settling tanks has been studied by a few investigators [4,5]. There is a maximum limit on  $M_s$  which depends upon the surface area and depth of the settling tank and on the  $X_{SB}$ . Knowledge of this maximum limit is needed to evaluate how well the settling tanks functions to store sludge during hydraulic overloads.

Other investigators have studied solid concentrations in settling tanks but were addressing the thickening function rather than the solids storage function. Pflanz [6], in an experiment at Celle, measured suspended solids concentrations at various depths and identified the three zones shown in Fig. 1 as a clarification zone with less than 50 mg/l suspended solids, a transition zone with a concentrations between 100 and 1000 mg/l and a thickening zone with higher suspended solids concentration. Vitasovic [4] developed a model of thickening which predicts vertical profiles of the solids concentrations in the sludge blanket. Takacs et al. [7] tried to explain the dynamics of the thickening

process using the same parameters as Pflanz [6]. Samstag et al. [8] used a numerical model of stratified flow to illustrate density flow effects.

However, none of these investigators proposed a technique for estimating  $X_{SB}$ . The only currently documented technique is averaging the mixed liquor suspended solids (X) and the underflow suspended solids ( $X_u$ ) concentrations [9]:

$$X_{\rm SB} = \frac{\left(X + X_{\rm u}\right)}{2}.\tag{6}$$

Eq. (6) uses only a small part of the information usually available to an operator and does not take into consideration the effects of either the sludge settling characteristics or of the operation of the settling tanks on  $X_{SB}$ .

We undertook a field study to develop a method for estimating  $X_{SB}$  which uses information in addition to X and  $X_u$ . We investigated parameters which a plant operator can readily ascertain including the activated sludge settling and compaction characteristics and the hydraulic loading conditions of the settling tanks.

#### 2. Methods and materials

The data were obtained from a regional wastewater treatment plant in Chester, PA which is rated to treat a flow of 166540 m<sup>3</sup>/d. The activated sludge process in this plant has four mechanically aerated aeration tanks (total aeration tank volume = 37850 m<sup>3</sup>) and four circular, center feed, up-flow, settling tanks. The mixed liquor is divided equally among the four settling tanks and flows into each through a center stilling well. The thickened sludge is siphoned from the bottom of each tank at six different locations on a rotating arm. The total area of settling tanks is 4930 m<sup>2</sup> and the side water depth is 4.57 m.

Samples for measurement of X,  $X_e$ ,  $X_u$  and  $X_{SB}$  were collected once or twice a week for the period from September 1992 through August 1994. Suspended solids determinations were performed in duplicate on each sample following Method 213C of Standard Methods for the Examination of Water and Wastewater [10].

Settling tests on the mixed liquor were performed in 1000 ml graduated cylinders which were stirred at 1 rpm to minimize the wall effects [10]. Four sets of settling tests were performed for each of the mixed liquor samples and the results were averaged. After 30 min, the sludge volume was recorded as a fraction  $(SV_f)$  of the initial volume and well as the absolute volume in ml. Also, the initial settling velocity (ISV) of the mixed liquor suspended solids was calculated from a linear regression on the initial parts of the settling curves.

The sludge blanket depths (SBD) were measured at the same times that the samples for determination of  $X_{SB}$  were collected. A number of devices for sampling the sludge blanket have been described previously [11]. We used a simple tube type device, illustrated in Fig. 2, for collecting the solids samples and locating the top of the sludge blanket. As the tube is lowered slowly into settling tank, the water pressure keeps the valve open allowing the sludge to enter the tube with a minimum of disturbance. This sampling device is the same as those used by the operators at the plant studied for

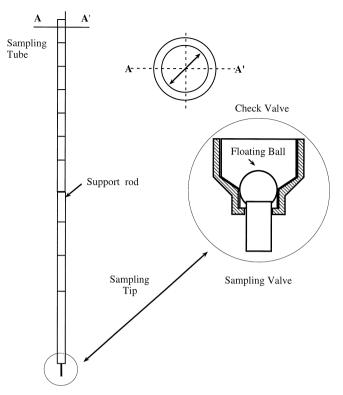



Fig. 2. Diagram of the apparatus used for sampling the sludge blanket.

measuring the SBD in each tank every 2 h and is readily available to operators at other plants.

When a sample of the sludge blanket is withdrawn from a settling tank, the height of the sludge/water interface can be determined visually. The depth of sludge blanket is determined by subtracting the depth of the top of the sludge blanket from the side water depth of the settling tanks. On each sampling trip, six samples of the sludge blanket were obtained at equally spaced intervals from the center to the periphery of the settling tank. Each sample included a section from the top to bottom of the sludge blanket and had a volume of about 2000 ml. Duplicate determinations of the suspended solids concentration of each sample were made and the  $X_{SB}$  was calculated by multiplying by the tank depth divided by the measured SBD.

## 3. Results and discussion

Data from the 56 sampling trips are presented in Table 1. The mixed liquor suspended solids concentration varied between 1315 and 2715 mg/l and the underflow suspended solids concentration varied between 4215 and 7190 mg/l. The SVI was often

| Table 1                                                       |             |
|---------------------------------------------------------------|-------------|
| The results of 56 sampling trips between September 1992 and A | August 1994 |

| No. | Date            | X      | X <sub>u</sub> | Q         | SVI    | ISV          | $Q_{\rm r}$ | X <sub>SB</sub> | SBD  |
|-----|-----------------|--------|----------------|-----------|--------|--------------|-------------|-----------------|------|
|     |                 | (mg/l) | (mg/l)         | $(m^3/d)$ | (ml/g) | (cm/min)     | $(m^3/d)$   | (mg/l)          | (m)  |
| 1   | 9/16/92         | 1700   | 5460           | 123 353   | 197    | 2.27         | 58213       | 1612            | 2.26 |
| 2   | 9/25/92         | 1775   | 5960           | 132475    | 185    | 2.30         | 53 369      | 1940            | 2.20 |
| 3   | 10/2/92         | 1930   | 5855           | 118054    | 192    | 1.98         | 51703       | 1616            | 1.49 |
| 4   | 10/9/92         | 1965   | 5645           | 128235    | 153    | 2.39         | 64345       | 1940            | 1.83 |
| 5   | 10/16/92        | 1810   | 5385           | 124 905   | 144    | 3.05         | 61317       | 2628            | 1.16 |
| 6   | 10/30/92        | 1980   | 6040           | 113928    | 141    | 2.83         | 58668       | 2843            | 1.10 |
| 7   | 11/6/92         | 2010   | 6016           | 134746    | 131    | 3.47         | 62453       | 3103            | 1.31 |
| 8   | 11/13/92        | 1483   | 4985           | 160711    | 157    | 3.78         | 68130       | 2267            | 1.52 |
| 9   | 11/13/92        | 1615   | 4915           | 130923    | 150    | 3.16         | 55 261      | 2035            | 0.98 |
| 10  | 11/19/92        | 1600   | 5054           | 119984    | 153    | 3.05         | 54 504      | 2829            | 0.76 |
| 11  | 11/19/92        | 1630   | 4235           | 123 391   | 155    | 2.84         | 59803       | 1878            | 0.95 |
| 12  | 11/20/92        | 1610   | 4235<br>5310   | 123 391   | 161    | 2.95         | 61317       | 2483            | 1.19 |
| 12  | 12/4/92         | 1315   | 5775           | 230772    | 158    | 3.50         | 51855       | 1900            | 3.32 |
| 13  | 12/11/92        | 1930   | 6790           | 161 620   | 138    | 4.02         | 66238       | 3815            | 0.95 |
| 14  |                 | 1930   | 5800           | 123 353   | 114    | 4.02         | 62263       | 3320            | 0.93 |
|     | $\frac{12}{22}$ |        |                |           |        | 4.25<br>4.20 |             | 3320<br>3273    |      |
| 16  | 12/24/92        | 1965   | 5460           | 87 055    | 109    |              | 38607       |                 | 0.46 |
| 17  | 12/29/92        | 1920   | 5515           | 122218    | 107    | 4.30         | 64345       | 4172            | 0.73 |
| 18  | 1/15/93         | 1960   | 5905           | 124 527   | 110    | 4.06         | 58289       | 3587            | 0.77 |
| 19  | 1/22/93         | 1720   | 5415           | 153293    | 116    | 4.30         | 74943       | 3392            | 0.69 |
| 20  | 1/27/93         | 1770   | 5735           | 129069    | 121    | 4.30         | 62074       | 3044            | 1.10 |
| 21  | 1/29/93         | 1775   | 5715           | 125 283   | 110    | 4.11         | 57911       | 3284            | 0.72 |
| 22  | 2/3/93          | 1550   | 5140           | 132096    | 116    | 4.70         | 62831       | 3045            | 0.70 |
| 23  | 2/5/93          | 1550   | 4835           | 135124    | 121    | 4.56         | 62074       | 3640            | 0.79 |
| 24  | 2/12/93         | 1650   | 5285           | 149 508   | 133    | 4.52         | 73429       | 3467            | 0.94 |
| 25  | 2/19/93         | 1715   | 5640           | 136639    | 128    | 4.14         | 61 696      | 3696            | 1.07 |
| 26  | 3/3/94          | 2185   | 6645           | 164383    | 105    | 4.23         | 90840       | 3554            | 1.59 |
| 27  | 3/9/94          | 2210   | 6350           | 152536    | 100    | 4.80         | 90840       | 4038            | 1.19 |
| 28  | 3/10/94         | 1170   | 6340           | 291456    | 111    | 6.21         | 90840       | 3223            | 2.71 |
| 29  | 3/11/94         | 2375   | 6485           | 150643    | 93     | 4.23         | 90840       | 3800            | 1.34 |
| 30  | 3/17/94         | 2345   | 7120           | 134027    | 98     | 4.32         | 55639       | 4118            | 1.09 |
| 31  | 3/22/94         | 2290   | 7055           | 161 620   | 100    | 4.32         | 83270       | 4099            | 1.70 |
| 32  | 3/24/94         | 2580   | 6915           | 127276    | 93     | 3.56         | 63 588      | 3587            | 1.62 |
| 33  | 3/28/94         | 2370   | 6495           | 153 898   | 93     | 4.32         | 90840       | 3997            | 1.83 |
| 34  | 3/29/94         | 2435   | 6310           | 166805    | 86     | 4.32         | 90840       | 4058            | 1.98 |
| 35  | 4/5/94          | 2305   | 6425           | 147615    | 89     | 4.41         | 90840       | 4173            | 1.28 |
| 36  | 4/6/94          | 2135   | 5935           | 148334    | 98     | 4.41         | 90840       | 3369            | 1.37 |
| 37  | 4/12/94         | 2490   | 6330           | 136374    | 92     | 4.32         | 83270       | 4234            | 1.29 |
| 38  | 4/14/94         | 2500   | 6645           | 155 147   | 96     | 4.23         | 85 541      | 4096            | 1.40 |
| 39  | 4/19/94         | 2500   | 7190           | 141 673   | 108    | 3.78         | 80242       | 4408            | 1.71 |
| 40  | 4/21/94         | 2605   | 6555           | 118656    | 92     | 3.08         | 60560       | 3845            | 1.28 |
| 41  | 4/26/94         | 2625   | 7005           | 121007    | 95     | 2.95         | 58137       | 4432            | 1.49 |
| 42  | 4/29/94         | 2715   | 6800           | 143 830   | 111    | 2.77         | 66199       | 3342            | 1.98 |
| 43  | 5/3/94          | 2420   | 6575           | 136638    | 99     | 4.05         | 77 668      | 4291            | 1.56 |
| 44  | 5/5/94          | 2340   | 6985           | 134368    | 98     | 3.96         | 67183       | 4457            | 1.13 |
| 45  | 5/13/94         | 2270   | 6100           | 116957    | 106    | 4.05         | 56131       | 4387            | 0.95 |
| 46  | 5/17/94         | 2220   | 6135           | 137017    | 108    | 4.05         | 68 508      | 3512            | 1.22 |
| 47  | 5/27/94         | 2285   | 6385           | 162755    | 101    | 3.78         | 81 377      | 2915            | 1.13 |
| 48  | 6/1/94          | 2220   | 6650           | 140045    | 99     | 4.03         | 70022       | 3475            | 1.04 |

| No. | Date    | X<br>(mg/l) | $X_u$ (mg/l) | $Q (m^3/d)$ | SVI<br>(ml/g) | ISV<br>(cm/min) | $Q_{\rm r}$<br>(m <sup>3</sup> /d) | X <sub>SB</sub><br>(mg/l) | SBD<br>(m) |
|-----|---------|-------------|--------------|-------------|---------------|-----------------|------------------------------------|---------------------------|------------|
| 49  | 6/3/94  | 2310        | 6060         | 162755      | 97            | 3.88            | 90840                              | 3065                      | 1.01       |
| 50  | 6/8/94  | 2115        | 6215         | 140045      | 99            | 4.21            | 51788                              | 3442                      | 0.91       |
| 51  | 6/21/94 | 1940        | 5090         | 105 980     | 124           | 3.64            | 40272                              | 2932                      | 0.76       |
| 52  | 6/24/94 | 1910        | 5355         | 105980      | 136           | 3.87            | 40272                              | 2952                      | 1.21       |
| 53  | 6/28/94 | 2095        | 5765         | 109765      | 124           | 3.04            | 43906                              | 3726                      | 1.37       |
| 54  | 7/11/94 | 2050        | 5225         | 117032      | 117           | 3.51            | 50870                              | 3302                      | 0.76       |
| 55  | 7/19/94 | 2180        | 5875         | 149659      | 106           | 4.50            | 90840                              | 3582                      | 1.16       |
| 56  | 7/27/94 | 2070        | 5830         | 128690      | 87            | 4.86            | 64345                              | 4151                      | 1.01       |

Table 1 (continued)

high (bulking sludge). The relatively wide range of variation in the SVI and the initial settling velocity provided the data needed for determining the effects of sludge settling characteristics on  $X_{SB}$ .

The return sludge flow rate was adjusted by the plant operators every 2 h and was usually maintained between 40 and 50% of the influent flow. During rainstorms when Q was large,  $Q_r$  was limited by the capacity of the return sludge pumps to 102 000 m<sup>3</sup>/d and  $Q_r/Q$  decreased as Q increased.

## 3.1. Sampling of sludge blanket suspended solids

Estimation of the amount of suspended solids in the settling tanks requires measurement of both the sludge blanket depth (SBD) and the average suspended solids concentration in the sludge blanket ( $X_{SB}$ ). At the start of this investigation, we did not have any information on the reliability of the measuring tube device for collecting suspended solids samples and carried out short-term studies to make sure that we were obtaining the samples which would give the data needed.

In order to check for sampling disturbances when the transparent tube is used, the solids profile in the sludge layer in the sampling tube was determined three times and the results are presented in Fig. 3. These results show that the sludge layer in a settling tank can be sampled using the tube type sampler without causing back-mixing of sludge solids. It would be possible to obtain vertical concentrations profiles if that information was desired.

The diameter of each settling tank sampled was approximately 10 m and we considered the possibility that the SBD might vary from the center to the periphery of a tank. During each sampling trip, six SBD measurements were obtained at equally spaced intervals from the center to periphery of the settling tank. The average SBD of the six different location is plotted in Fig. 4 and this shows that there is no significant difference between the average SBD and the SBD measured at halfway between the center and periphery of the settling tank.

Other investigators literature have measured vertical profiles of suspended solids concentrations in settling tanks [6,8]. The method used by these other investigators was

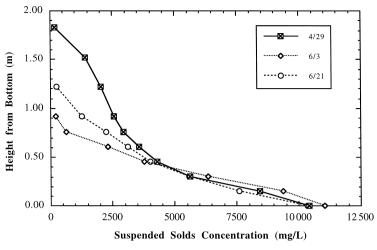



Fig. 3. Vertical solids profiles obtained from the sludge blanket sampler.

to draw samples from different depths in the tank. This approach is not feasible method for plant operation because of sampling time and effort and the large number of suspended solids determinations required. Operators could use the transparent tube sampling device to obtain samples for measurement of the  $X_{SB}$ .

In this study, six samples from the sludge blanket were collected at equally spaced intervals between the center and periphery of the settling tanks. Fig. 5 shows a plot of the average  $X_{SB}$  values from the six different sampling locations vs. the  $X_{SB}$  measured

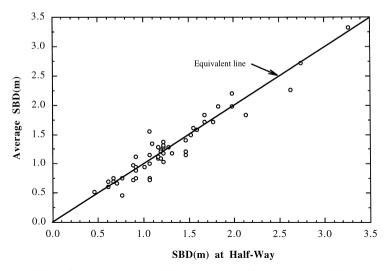



Fig. 4. Comparison between SBD measured at halfway and average SBD.

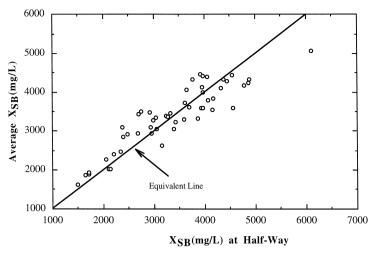



Fig. 5. Comparison between  $X_{SB}$  measured at halfway and average  $X_{SB}$ .

halfway between the center and periphery. This indicates that sampling at the halfway point gives a reasonable approximation of the average  $X_{SB}$  for the entire settling tanks.

### 3.2. Averaging method for estimating $X_{SB}$

Even with the transparent tube sampling device, the sampling and analytical effort required for accurate measurement of  $X_{SB}$  is usually more than the operating personnel at a wastewater treatment plant can afford. In the past, the operating personnel at the plant which we used in this investigation have estimated the  $X_{SB}$  as the average of the X and the  $X_u$  (Eq. (6)).

The usefulness of this approach for estimating the  $X_{SB}$  was tested by a linear regression of the measured  $X_{SB}$  vs. the sum of X and  $X_u$  for the data in Table 1. The results of this regression are presented in Fig. 6.

Clearly, there is a correlation between  $(X + X_u)$  and  $X_{SB}$ , but the correlation coefficient is 0.44 which indicates that only 44% of variation in the measured  $X_{SB}$  is related to the sum of X and  $X_u$ . The slope of regression line is 0.53, which is very close to the 0.5 used in Eq. (6), but the intersection is -846 mg/l, which indicates that the average method tends to overestimate the  $X_{SB}$  in the settling tanks.

#### 3.3. Development of new estimation technique

Correlations between  $X_{SB}$  and X and between  $X_{SB}$  and  $X_u$  demonstrated that both X and  $X_u$  influence the value of  $X_{SB}$  but did not explain all of the variation in  $X_{SB}$ . One hypothetical limit to the thickening process can be thought of as  $X_{SB}$  being equal to  $X_u$  when the SBD is zero. To accommodate this hypothetical limit, we decided to correlate the ratio of  $X_{SB}/X_u$  with other variables representing the flow conditions in the settling tank and the sludge settling and compaction characteristics. We decided also

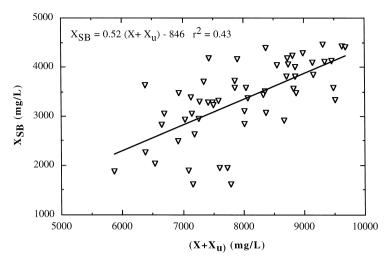



Fig. 6. Linear regression of average method.

to use dimensionless ratios for the other variables so that the regression parameters would not have dimensions.

By considering several variables which a plant operator can readily evaluate, the following functional relationship may be written:

$$\frac{X_{\rm SB}}{X_{\rm u}} = \phi[v, u, \rm ISV, X_{\rm i}, \rm SV_{\rm f}], \tag{7}$$

where v is overflow rate over the settling tank  $(Q/A_s)$ , u is the underflow rate  $(Q_r/A_s)$ , ISV is the initial zone settling velocity of mixed liquor suspended solids [m/d],  $SV_f =$  sludge volume fraction after 30 min settling in an 1 l graduated cylinder [1/1], and  $X_i$  is the mixed liquor suspended solids in weight per unit weight [kg/kg]. If the density of the mixed liquor is not significantly different from 1 g/ml, then  $X_i$  is X divided by  $10^6$  mg/kg.

Several trials of regression and correlation resulted in the finding that the logarithm of  $X_{SB}/X_u$  was more closely correlated with the other variables than the simple ratio and that the other variables could be efficiently expressed as two ratios, v/(ISV + u) and  $SV_f/X_i$ :

$$\ln\left[\frac{X_{\rm SB}}{X_{\rm u}}\right] = \psi\left[\frac{\upsilon}{\rm ISV + u}, \frac{\rm SV_{\rm f}}{X_{\rm i}}\right].$$
(8)

The velocity ratio between v/(ISV + u) represents the effects of hydrodynamic forces on the sludge layer in the settling tanks as well as the settling characteristics of the sludge and the ratio of  $SV_f$  to  $X_i$  is primarily a measure of how well the solids compact; i.e., how high a concentration is reached in 30 min settling and compaction in a graduated cylinder. It should be noted that both the 30 min settled volume and the mixed liquor suspended solids concentrations are expressed as dimensionless ratio,  $SVI = SV_f/X_i$ .

Almost any mathematical function can be expressed as a power series. In this case, only the first terms are considered for dimensional homogeneity. Eq. (8) is altered to:

$$\ln\left[\frac{X_{\rm SB}}{X_{\rm u}}\right] = c \left[\left(\frac{v}{\rm ISV+u}\right)^a \left(\frac{\rm SV_{\rm f}}{X_{\rm i}}\right)^b\right],\tag{9}$$

where *a*, *b* are exponents and *c* is proportionality constant. This type of equation is very practical for correlating experimental data. Empirical parameters of the Eq. (9) were evaluated using an Excel spreadsheet with the built-in/nonlinear optimization package. The optimum values are: c = 0.13, a = 0.98, and b = 0.52. The parameters *a* and *b* were rounded off to 1 and 0.5, respectively, in order to make the calculations simpler. Substitution of *c*, *a*, and *b* estimates into Eq. (9) resulted in the following:

$$\ln\left[\frac{X_{\rm SB}}{X_{\rm u}}\right] = 0.13 \left[\left(\frac{v}{\rm ISV+u}\right) \left(\frac{\rm SV_{\rm f}}{X_{\rm i}}\right)^{(1/2)}\right].$$
 (10)

The usefulness of Eq. (10) for predicting the  $X_{\rm SB}$  in the settling tank was tested by performing a regression of the predicted  $X_{\rm SB}$  vs. the measured  $X_{\rm SB}$  which is shown in Fig. 7. The coefficient of determination  $(r^2)$  is 0.82 which indicates that 82% of the variation in the measured  $X_{\rm SB}$  can be described by the observed values of  $X_{\rm SB}$ . The slope of the best fit line is not significantly different from 1 (45° line) and the value of the intercept is 2.4 mg/l which is not significantly different from zero.

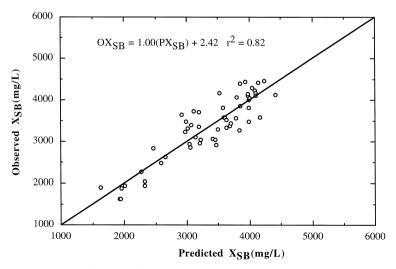



Fig. 7. Predicted and measured  $X_{SB}$  concentration.

#### 3.4. Interpretation of the new estimation method

The new estimation equation indicates that  $X_{\rm SB}$  is affected by the SVI and by hydraulic conditions in the settling tanks. It seems likely that the effect of SVI on  $X_{\rm SB}$ will be similar for most activated sludge processes. However, the effect of the hydraulic conditions in the settling tanks on  $X_{\rm SB}$  may vary for different activated sludge processes because many different settling tank designs have been used. Also, the effect of hydraulic conditions in the settling tanks should depend upon the depth of the sludge blanket.

The upper boundary of Eq. (10) can be conceptualized by considering that as the overflow rate approaches zero,  $\ln[X_{SB}/X_u]$  also approaches zero which means that  $X_{SB}$  approaches  $X_u$ . When there is very small inflow  $(Q + Q_r)$  to the settling tanks, the sludge blanket depth will be very low and all of the sludge will thicken to the underflow suspended solids concentration. When the overflow rate  $(v = Q/A_s)$  is increased relative to a given ISV + u, the sludge blanket would be expanded due to the upward flow of water through the settling sludge. Takacs et al. [7] explained this phenomena using the concept of particle size distribution. As the overflow rate increases, particles in the settling sludge are fluidized and carried upward. This fluidization causes the transfer of solids to the upper part of the settling tank, increases the sludge blanket depth and decreases the  $X_{SB}$ . On the other hand, either a high zone settling velocity (ISV) or an increase in the underflow rate  $(u = Q_r/A_s)$  will counteract the effect of a higher v. These concepts are true in a qualitative sense but probably will vary quantitatively depending on the design of the settling tanks.

A higher  $SV_f/X$  was found to result in a lower  $S_{SB}$ . This should be obvious because  $SV_f/X$  measures the volume (1/1) occupied by 0.001 kg/kg of sludge solids after 30 min settling and the volume occupied by the sludge during settling would also be expected to be higher. This aspect of the problem was previously studied by other investigators. For example, Parker [12] concluded that in shallow settling tanks (1.2–2.27 m deep) studied by Pflanz [6], the higher sludge blanket depth was associated with higher SVI values.

#### 3.5. Simpler estimation technique

Eq. (10) may be a bit cumbersome for many plant operators to use routinely. In an attempt to find an estimation equation which would be more readily accepted by plant operators, we tried correlation of  $X_{SB}$  with X,  $X_u$  and  $SV_f$ . Data from two sampling trips when the settling tanks were hydraulically overloaded were eliminated from the data set used for these regressions. The resulting best fit equation is:

$$X_{\rm SB} = 0.11 \left[ (X + X_{\rm u}) / \rm{SV}_{\rm f} \right] - 368.$$
<sup>(11)</sup>

A plot of  $X_{SB}$  vs.  $(X + X_u)/SV_f$  is presented in Fig. 8 to illustrate how well the equation represents the data.

The coefficient of determination is 0.70 which is clearly better than the 0.44 obtained for the method of averaging X and  $X_{\mu}$ . Eq. (11) could be used by an operator as easily

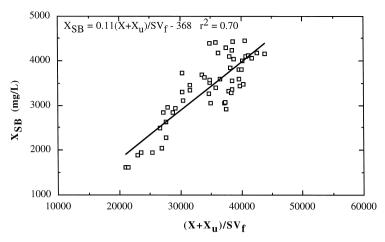



Fig. 8. Linear regression of a simplified method.

as Eq. (6) to give an improved estimate of  $X_{SB}$  for normal flow conditions. However, in order to determine the capacity of the settling tanks to store sludge during a hydraulic overload, an approach similar to that embodied in Eq. (10) should be used.

#### 4. Summary and conclusion

The sludge in the activated sludge clarifiers can be sampled without causing any back-mixing of solids by using an simple integrated sampler. There is no significant difference between the average SBD and the SBD measured at halfway between the center and periphery of the settling tanks. Sampling at halfway between the center and periphery of the settling tank gives a good approximation of the average  $X_{SB}$  in the settling tanks.

The average  $X_{SB}$  tends to increase with an increase in either X or  $X_u$ . However, the correlation indicates that only 44% of the variation in the measured  $X_{SB}$  is related with sum of X and  $X_u$ . The method of averaging X and  $X_u$  tends to overestimate the  $X_{SB}$ .

A new empirical model for predicting  $X_{SB}$  was developed. The logarithmic ratio of  $X_{SB}$  to  $X_u$  was successfully related to the dimensionless plant operation variables, v/(ISV + u) and  $SV_f/X$ . The empirical model has proven predictive capability of  $X_{SB}$  for the entire operating SBD and SVI range. This empirical model can be used to provide better information about the amount of sludge in the settling tanks for calculation either of the sludge residence time or of the amount of sludge stored in the settling tanks during a hydraulic overload.

Another estimation equation,  $X_{SB} = 0.11[(X + X_u)/SV_f]$  was also found to represent the data much better than the method of averaging X and  $X_u$ . This equation can easily be used by an operator for estimating  $X_{SB}$  during normal flow conditions; however, it does not apply during hydraulic overload conditions.

## **Appendix A. Nomenclature**

| $A_{s}$              | Surface area of the settling tanks [ft <sup>2</sup> or m <sup>2</sup> ]                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| f                    | Unit conversion factor (8.34 lb/gal or 0.001 kg/g)                                                                             |
| ISV                  | Initial settling velocity (zone settling velocity at X) [ft/d or $m/d$ ]                                                       |
| $J_{ m e}$           | Mass flow of suspended solids in the overflow (effluent) from the settling                                                     |
|                      | tanks [lb/d or kg/d]                                                                                                           |
| $J_{\mathrm{m}}$     | Mass flow of suspended solids in the mixed liquor flow from the aeration tanks to the settling tanks $[lb/d \text{ or } kg/d]$ |
| $J_{ m r}$           | Flow of suspended solids in the return sludge from the settling tanks to the                                                   |
| J <sub>r</sub>       | aeration tanks [ $b/d$ or kg/d]                                                                                                |
| $J_{\rm m}$          | Flow of suspended solids in the underflow from the settling tanks [lb/d or                                                     |
| J <sub>u</sub>       | kg/d]                                                                                                                          |
| $J_{ m w}$           | Flow of suspended solids in the waste sludge $[lb/d \text{ or } kg/d]$                                                         |
| $M_{\rm a}$          | Mass of suspended solids in the aeration tanks [lb or kg]                                                                      |
| $M_{\rm s}^{\rm u}$  | Mass of suspended solids in the settling tanks [lb or kg]                                                                      |
| Q                    | Flow rate of process influent [million gallons per day or $m^3/d$ ]                                                            |
| $\tilde{Q}_{ m r}$   | Flow rate of return sludge [million gallons per day or $m^3/d$ ]                                                               |
| $\tilde{Q}_{ m w}$   | Flow rate of waste sludge [million gallons per day or $m^3/d$ ]                                                                |
| SBD                  | Sludge blanket depth [ft or m]                                                                                                 |
| $SV_{f}$             | Sludge volume after 30 min of settling expressed as a fraction [1/1]                                                           |
| SVI                  | Sludge volume index [ml/g]                                                                                                     |
| t                    | Time [h]                                                                                                                       |
| $\Delta t$           | Period of time for evaluation of solids accumulation in the settling tanks [h]                                                 |
| и                    | Underflow velocity $(Q_r/A_s)$ [m/d]                                                                                           |
| v                    | Overflow rate $(Q/A_s)$ [m/d]                                                                                                  |
| $V_{\mathrm{a}}$     | Volume of aeration tanks [million gallons or m <sup>3</sup> ]                                                                  |
| $V_{\rm s}$          | Volume of sludge blanket [million gallons or m <sup>3</sup> ]                                                                  |
| $\dot{X_{SB}}$       | Average suspended solids concentration in the sludge blanket $[mg/l = g/m^3]$                                                  |
| $X_{\rm e}^{\rm SB}$ | Effluent (overflow) suspended solids concentration $[mg/l = g/m^3]$                                                            |
| Ň                    | Mixed liquor suspended solids concentration $[mg/l = g/m^3]$                                                                   |
| $X_{i}$              | Mixed liquor suspended solids concentration expressed as a dimensionless                                                       |
| 1                    | ratio [kg/kg]                                                                                                                  |
| $X_{\mu}$            | Underflow liquor suspended solids concentration $[mg/l = g/m^3]$                                                               |
| $\theta_x^{u}$       | Mean cell residence time [days]                                                                                                |
| л                    | - • -                                                                                                                          |

## References

- [1] Y. Kim, W.O. Pipes, Water Environment Research 68 (1) (1996) 123.
- [2] Y. Kim, Solids Storage Function of Activated Sludge Settling Tanks during Hydraulic Overloads, PhD dissertation, Drexel University, 1995.
- [3] Y. Kim, W.O. Pipes, Water Sci. Technol. 34 (3) (1996) 9.
- [4] Z.Z. Vitasovic, An Integrated Control Strategy for the Activated Sludge Process, PhD dissertation, Rice University, 1989.

- [5] D. Thompson, Activated Sludge: Step Feed Control to Minimize Solids Loss during Stormflow, MEng thesis, McMaster University, 1988.
- [6] P. Pflanz, in: S.H. Jenkins (Ed.), Advances in Water Pollution Research 1969, Pergamon, London, 1969, pp. 569–581.
- [7] I. Takacs, G.G. Patry, D. Nolasco, Water Research 25 (10) (1991) 1263.
- [8] R. Samstag, D.F. Dittmar, Z.Z. Vitasovic, J.A. McCorquodale, Water Environment Research 64 (1992) 204.
- [9] Metcalf and Eddy, Wastewater Engineering, Treatment, Disposal, and Reuse, McGraw-Hill, New York, 1991.
- [10] American Public Health Association, Standard Methods for the Examination of Water and Wastewater, Washington, DC, 1991.
- [11] D.T. Chapman, The Influence of Dynamic Loads and Process Variables on the Removal of Suspended Solids from the Activated Sludge System, PhD dissertation, University of Alberta, 1984.
- [12] D.S. Parker, in: Presented at the 55th Annual Conference of the Water Pollution Control Federation, Assessment of Secondary Clarification Design Concepts, St. Louis, MO, 1982.